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Electronic structure calculations which are based on Wannier, like
localized orbitals or the related density matrix, are an alternative
to conventional calculations based on extended orbitals. For large
systems this approach is potentially faster since it offers O(N) scaling
with respect to the number of atoms in the system. We derive a class
of algorithms based on projection to calculate either the localized
orbitals or the density matrix. & 1995 Academic Press, Inc.

1. INTRODUCTION

The complexity of an algorithm describes its scaling with
respect to the size of the system N. If the number of operations
necessary to do a certain calculation is given by ¢N* we speak
of a low complexity algorithm if the exponent  is small and
of a high complexity algorithm if the exponent « is large. It is
an empitical observation that the prefactor ¢ is it generat much
larger for low complexity algorithms. If there are two algo-
rithms availabie for a certain problem, one of low complexity
and with a high prefactor, the other of high complexity but with
a low prefactor, there is therefore in general a crossover point
where both algorithms require the same computer resources. If
we go to larger systems, the low complexity algorithm will be
faster; if we go to smaller systems the high complexity algorithm
will be faster. [n other words, because of larger prefactors, low
complexity algorithms are only competitive if we have powerful
computers at our disposal, which allow us to treat large systems.
Computers become faster at a rapid rate and we therefore have
to replace high complexity algorithms by low complexity algo-
rithmns. This trend can be observed in all domains of computing.
Also, in electronic structure calculations some of the most im-
portant recent progress was related to the use of new lower com-
plexity algorithms. In the Car Parrinello method [4] or conjugate
gradient method [5-7], for instance, the numerical effort 1o cal-
culate the matrix times the vector product of the Hamiltonian with
an orbital, which is a sum of n plane waves, is not proportional to
' as it would be for an ordinary matrix times vector multiplica-
tion, but is proportional only to n log; (n). Even the best available
electronic structure calculation methods [4-7] still have a scaling
which is cubic with respect to the number of electrons. This cubic
scaling comes from the requirement that the orbitals be orthogo-
nal. Int the case of Gram-Schinidt orthogonalization, for in-
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staiice, each orbital has to be orthogonalized to all the
previous ones. As the system gets larger the number of the
orbital increases and each orbital extends over a larger
volume, requiring more basis set functions and therefore
longer vectors, resulting altogether in a cubic operation count.
The cubic terms arising from nonlocal pseudopotentials have
recently been eliminated [8, 9]. Some proposals have recenily
been made for algorithms with linear scaling [1-3, 10-13].
We will derive a new family of algorithms with linear scaling
based on projection, examine in depth the relation between
the physics of the electronic system and the applicability of
linear algorithms to it, and try to estimate the crossover
points. To perform the analysis some new tools are required,
such as the calculation of density matrices at finite temperature
through complex contour integration.

Extended orbitals {which are eigenfunctions of the one-parti-
cle Hamiltonian) are the basic quantity in conventional electronic
structure calculations. As the system grows, both the number of
extended orbitals and the volume over which each orbital extends
increase. If one could avoid the orthogonalization step, the best
possible scaling which one could obtain with extended orbitals
would therefore be guadratic. To obtain a linear scaling, the ex-
tended orbitals have to be replaced by the density matrix, whose
physical behavior can be exploiied o obtain a fast algorithm.
This last point is essential. Mathematical and numerical analyses
alone are not sufficient to construct a linear algorithm, They have
to be combined with physical intuition. The loss of extended or-
bitals as the central quantity does not imply a [oss of information
about the system. In non-selfconsistent methods the basic quan-
tity is the sum over all occupied eigenvalues. In the selfconsistent
Kohn sham density functional theory [14] the two basic quanti-
ties are the sum of all the occupied Kohn sham eigenvalues and
the charge density. These two quantities can be calculated di-
rectly from quantities related to the density matrix. It should also
be pointed out that the absence of extended orbitals does not re-
duce the chemical understanding of big systems. Even though
extended orbitals certainly give insight into chemical bonding of
small molecules, looking at 1000 extended orbitals of a 100 atom
system does not convey any useful information. It is, of course,
alsotrue that some selected orbitals (HOMO, LUMO) give useful
information, but the calculation of a few orbitals is a relatively
easy task.

0021-9991/95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



262

.

Correlation function (ark. units}

Q
1 1 1 1 1 1
0 5 i0 15 20 25 30
t (atemic uhitg)
FIG. 1. The correlation function F{0, r) for jellium with density ry = 2.

The solid line shows the zerc temperature result, the dashed line the resuit
at 7 = 107" Hartree. The room temperature resull (7 = 107* Hartree) is
indistinguishable from the zero temperature result on the scale of this plot.

2. PHYSICAL PROPERTIES OF THE DENSITY MATRIX

Let us now briefly discuss the physical properties of the
density matrix which are relevant for our numerical analysis.
The (one-particle) density matrix is given by

Fuor,r')= Z W) f (%;‘;_ﬂ) PEr), (n

where W(r) and &; are the eigenfunctions and eigenvectors of
an effective one-particle Hamiltonian and f(x) = 1/(1 + &%)
denotes the Fermi distribution. The density matrix can be inter-
preted as a kind of correlation function which describes the
importance of correlation between electronic properties at r
and r’. Electronic properties at r are fairly independent of the
potential at r’ if the distance between r and r’ is greater than
the correlation length, which equals the localization length of
F,r(r, r"). Calculations which we performed illustrate how the
volume of the localization region depends on two parameters.
For metallic systems the localization volume decreases with
increasing temperature, and for insulators it decreases with
increasing bandgap and temperature. For jellium [15], the result
can be calculated analyticaliy at zero temperature. In this case
F,r evidently depends only on the difference 'r — r'l.

Fr) = % (sin(ksr) — (kpr) cos(ksr)),

where k; is the Fermi wave vector. Even though F,r decays,
the decay is only algebraic and very slow. As shown in Fig.
1, higher temperatures improve the situation somewhat, but
unless one goes to unphysicaily high temperatures the localiza-
tion is rather poor. In Fig. 2 the decay properties of F,; for
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some model insulators are shown. Even in this case the localiza-
tion region is rather big and comprises several dozens of
atoms.

The fact that a linear algorithm can be obtained for a quantum
Coulomb system might seem surprising. For a classical system
it is already a difficult task to construct such an algorithm since
one cannot simply cut off the long-range Coulomb potential at
an arbitrarily large radius. In the case of a metal the long-range
Couloemb coupling enters through the interaction between the
Fermi level and the Hariree potential. In a selfconsistent calcula-
tion a selfconsistent Hartree potential is found by a process
called mixing [16], which is not discussed in this paper, and
which might well turn out to be very difficult for large metallic
systems, reflecting the difficulties in the corresponding classical
system. In the case of an insulator, however, there is strong local
charge neutrality and determining the selfconsistent potential is
rather easy.

3. DIRECT METHODS FOR THE CHARGE DENSITY

Direct methods calculate the charge density directly on each
grid point without using localized orbitals as intermediate quan-
tities, Introducing the operator F, 7,

F.u,Tzf(EI}—'u)a

which is diagonal in the eigenfunction representation. Eqnation
(1) can be written in Diracs Bra Ket notation [17] as
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FIG. 2. The correlation function F(0, x) for two simple cubic model
insulators denoted A (solid line) and B (dashed line) along the bonding direction
x. Insulator A has a valence band width of 1.7 Hartree and a band gap of 0.6
Hartree, insulator B a valence band width of 1.2 Hartree and a band gap of
1.5 Hartree. The two dotted lines, keyed to the right axis, are logarithmic plots
of the two functions. It shows the exponential decay of the correlation function
which is faster for the insulator with a wider bandgap (B). The region near
the zeroes is cut out in the logarithmic plot. The positions of the atoms are
denoied by solid circles.
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Fp.r(r’ r)= 2 <r]q’£><\pxle.quf;‘)<q'jl r’)- (2}

The charge density is given by the diagonal eiements of the
density matrix. :

H—p
kT

pry =23 ‘P,-(r)*f( ) W,(r)

3)
= 23 e[ e ) (

The factor of two in front comes from the fact that each orbital
is occupied by two electrons.

Since Egs. (2) and (3) are invariant under unitary transforma-
tions, we can go from the set of eigenfunctions to any other
orthogonal complete set such as the set of delta functions located
at R. In this representation the density matrix is given by

Fur(r, 1) = [ dR [ 4R (r|RXRIF, R XR 1)

4
= (rle<Tlr’):

as it should be. Baroni [3] er al. used finite differences, which
can be considered to be numerical approximations to delta
functions, to calculate the charge density at zero temperature.
In a selfconsistent density functicnal calculation the charge
density has to be calculated on a very dense grid and the
calculation for a single point requires a heavy computation. As
he himself [3] remarked, a method which takes the smoothness
of the charge density into account would be desirable to reduce
the prefactor. One can profit by the smoothness if one uses
localized but continuous functions as the basis set. The use of
continuous basis functions requires, however, the knowledge of
off diagonal elements of the density matrix. These off-diagonal
elements can unfortunately not be calculated with the recursion
method, which was used by Baroni and others. In the following
a method which allows us to calculate these oft-diagonal ele-
ments is presented.

Let us introduce a set of localized continuous atomic-like
basis functions ug(r) = (r!u(R)). The index R denotes the
location of the basis function, but it can as well include other
properties such as angular momentum. Let us first assume that
they are orthogonal and the identity operator is therefore
given by

1= ®)u®).

k

For the charge density we therefore obtain
p(r) = RZR: {r [ u(RIKuR)| Fur R Nu®N 1) (5)

If the matrix F,r were known, the charge density could be
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calculated by several simple matrix times vector multiplica-
tions. Since the basis functions {r|#(R)} are localized, only a
small number of R, R’ need be included in the summation of
Eq. (5) for one point. Evidently, the density matrix is also in
this representation localized and it is not necessary to calculate
it for the whole system when evaluating the charge density at
one point. The method is therefore linear.

It remnains to be shown how to calcutate the matrix (u(R)[ F, ,m'ri
u#(R")}. A method which only requires one to find the inverse
of the Hamiltonian matrix, or equivalently the solution of [inear
systems of equations, is contour integration. As has been shown
(18], F,7 has an integral representation:

[
H-z

For= J-dz

The number of integration points needed to approximate the
above integral with a precision of four digits is of the order of
10. The charge density is therefore given by

p(r)

- sz S (e u(R)) <u(R) | L
R.R'

H—z

u(R')> wR)[r). (6)

Localized orthogonal orbitals are difficuli to construct, because
the orthogonality requirement necessitates slowly decaying os-
cillations over distances of several atoms. Nonorthogonal orbit-
als are much better localized and therefore recommended in
this context. If the orbitals are not orthogonal the overlap matrix
Ser = (u(R)[u(R')) comes into play and Eq. (6) becomes (see
Appendix 1)

Ar) = 3g dz RZ,:J {r|u(®MH ~ SORR R D). (D

4, DIRECT METHODS FOR THE EIGENVALUE SUM

A central quantity in both selfconsistent and non-selfconsis-
tent calculations, such as caiculations based on the Harris func-
tional [19] or on the tight binding method, is the sum F over
all eigenvalues:

)- (8)

Introducing the operator G, ; which is again diagonal in the
eigenfunction representation

H -—
Gz = Hf( kT‘”“),

we can express £ as the irace of G, r,

E= Z B,-f(&,,:T}L
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TABLE 1

Comparison of CPU Times Required to Calculate the Sum over All Occupied Eigenvalues for a System of n Atoms,
Treated with the Tight Binding Method

Number of atoms, a: 64 216
Time with LAPACK: 5 sec 2.7 min
Time with linecar method: 2.6 sec 32 sec

512 1000 1700 2144
34 min 180 min No timing No timing
1.8 min 3.8 min 7.1 min 11.7 min

E= E <‘P"]GV»J'N’:'> = Tr{G,r].

Let us now discuss how to calculate the trace. in addition to
the contour integration method discussed above there are two
other methods which are promising.

(a} Polynomial Approximation

Let us denote the extremal eigenvalues of H by en, and
Emn- A polynomial p,; can be constructed (e.g., Chebyshev
expansion) which approximates the Fermi distribution between
Emin and &, To get a good approximation the order M of the
polynomial has to be of the order of (g, — emu)/(KT}. If the
temperature is high or if, in the case of an insulator, it can be
chosen to be high, M can be reasonably small and we have
a very simple and efficient method. G,r is then given by
G,r = Hp,.r{H). Let us now assume that we have a set of
localized orthogonal basis functions u{R) where R denotes the
position of the localized orbital, as well as other indices such
as angular momentum 1f necessary. To calculate the trace we
do not explicitly construct G, but we calculate each diagonal
element (u(R)IG, 7Ju(R)) by first calculating G, r|u(R)) recur-
sively by simple matrix multiplication with # and then take
the scalar product with {#(R)|. Since the matrix G, r is also
sparse the method is again linear.

The above described method was applied to supercells of
carbon atoms in the diamond equilibrium geometry. The tight
binding method [20] was used as the electronic structure
method. In this scheme a window (8,4 — &ma) Of 50 &V is
sufficient. Since carbon is an insulator with a band gap of 4
eV we can choose a high electronic temperature of 1 eV and
the resulting polynomial is of degree 50. Table I shows the
timing results for an accuracy of 10 meV per atom. The linear
scaling is clearly visible and dramatic speedups were obtained
for large clusters. But also for relatively small clusters of 64
atoms the method was faster than exact diagonalization using
Lapack [21] routines. The tests were performed on an IBM
RS6000/550 workstation and a precision of | meV per atom
was required.

The program was aiso parallelized using PVM [22]. Paralleli-
zation can be easily achieved, since each column of the matrix
G, r can be calculated independently. On a cluster of eight IBM
RS6000 workstations we obtained a spec;d.uﬁ) of 6.4 compared
to the serial version for the 1000 atom system,

|

(b) Haydock's Method

As has been shown by Haydock [23], diagonal elements of
the Green function can easily be calculated by the recursion

scheme:
<u (R) ! U (R)>
o i

o),

where the coefficients a; and b; are defined by the recursion

b]ll1 = Hll() — gy

bn+1un+l = Hun - ag, — bnun—l-

a,1s chosen such that v, ;| is orthogonal 1o w, and b, normalizes
., to unity. One diagonal element of the matrix G, r can
therefore easily be calculated:

(un(RNGuJ[Hu(R»

= i) <MU(R) ]HI;IF 2 M(J(R)> dz

S

As has beent shown in [18], the integration path can either
represent zero or finite temperature conditions. If the Hamilto-
nian matrix is expressed with respect to a localized basis set,
the localized function u, will spread over roughly one additional
shell of neighbors in gach step of the recursion scheme. If a good
terminator can be found only a small number M of iterations is
required to obtain sufficient accuracy, and the function u,, will
be spread out only over a region which is small compared to
the total volume of a big system, and the method is therefore
linear. The generalization to nonorthogonal basis functions is
also given in Haydock’s paper [23].

5. DIRECT METHODS FOR THE MOMENTS OF THE
DENSITY OF STATES

The density of states can be reconstructed from its moments
M,, where
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M, =2 &l )

This can be done by either the Pade or the maximum entropy
method [24]. For reasons of numerical stability, it is preferable
not to use the moments from Eq. (9) but, instead, moments
with respect to well behaved polynomials such as the Legendre
polynomials L,. We will assume in the following that the Ham-
iltonian matrix was scaled in such a way that all eigenvalues
are in the interval [—1; 1}. The numerically stable moments
are then '

M, =X L. (10)

Let us now expand the density of states IX &) in Legendre poly-
nomials.

D(&) = D, ¢,L,(e). (1)
The expansion coefficients ¢, are then given by [25]
_2v+ 1
== f-. D(e)L (e) de. (12)

Using the properties of the trace and the definition of the density
of states, we obtain

LD = S Ly~ [ DeiL(erde.  (13)

This means that the moments M, are the expansion coefficients
of the density of states and they can be calculated by taking
the trace of the Legendre polynomial of the Hamiltonian matrix.
The approximate equal sign in Eq. (13) comes from the fact
that the sum can be replaced by the integral only in the Limit
of an infinitely large system. Since we are, however, interested
in very large systems, the approximation is very good. The
matrix L,(f) is much less diagonaliy dominant than the matri-
ces F rand G, 7. We have therefore in the present implementa-
tion not neglected any matrix elements and the method is there-
fore quadratic. If one needs, however, only moderate accuracy
one could neglect these elements, and the method then becomes
linear. The method evidently also scales linearly if one needs
to calculate only the local density of states for one or a few
selected atoms such as in the case of an impurity in a large
system. Even in the quadratic implementation the calculation
of the first 100 moments takes much less time than a classical
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diagonalization. In Table 1 we show the timings for conven-
tional diagonalization with LAPACK and for our method when
the two methods are applied to clusters of silicon atoms treated
with the tight binding method [26}. The test was again done
on an IBM RS6000/550 workstation.

In Fig. 3 we show the resulting density of states as given by
Eg. (11). No attempt was made to improve it with the above-
mentioned Pade or maximum entropy methods.

6. LOCALIZED ORBITALS IN INSULATORS AT
ZERO TEMPERATURE

The function F,(r, r') actually contains not only information
about the charge density at the point r = r' but about a whole
region around this point. At zero temperature, the density matrix
of an insulator is an idempotent projection operator, which has
only n, eigenvalues which are different from zero, where ny
is the number of electrons. The space Sp = {¥,, ¥, ..., ‘If,,d}
spanned by the density matrix can therefore be generated by
applying the density matrix to r,, linearly independent functions
by, oy .y d’"e] whose overlap with Sp is nonzero. The functions
(r|®) = {r|F,] ¢) which represent the projection of the original
set ¢ onto the space of eigenfunctions Sp can be calculated
by contour integration, which numerically is approximated by
a sum. Since this method does not require any special set of
localized basis functions, all operators are given in the r repre-
sentation.

&MO=&WH@=§&J&<r r}«ww

(14)

1
H-z

= $dz x| x)

where we denoted [ dr'(r|1/(H — 2|r'){r'| ¢y by (r]x).
The function {r|yx!) is a solution of the linear system of
equations

[ dr el = 2l [x) = (e ). (15)
A set of orthonormal orbitals ¢, s, ..., l,f;,,ﬂ is then given by

dy(r) = 3, S7Py(r),

where §;; = (®,|D,). The charge density is given by

pr) = 2 GF (O (r) = X, OF()S JD,r).  (16)
= L

Equation {16) necessitates the calculation of the overlap matrix
S (which is now an overlap matrix between orbital instead of
basis functions) which would result in a cubic scaling for ex-
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TABLE 11

Comparison of CPU Times Required to Calculate the First 100 Moments of the Density of States for a System of # Atoms,
Treated with the Tight Binding Method

Number of atoms, n: 64 216
Time with LAPACK: 3 sec 2.7 min
Time with quadratic method: 5.4 sec 1.1 min

512 1000 1728 2744
34 min 180 min No No
6.6 min 26 min 72 min 180 min

tended orbitals W,. If, however, the orbitals are localized, S is
sparse and both the calculation and inversion of § scale linearly.
Even if the inversion of § is not done with a method scaling
linearly (polynomial inversion, conjugate gradient methods)
this part of the calculation is negligibly small, and no overall
cubic behaviour could be seen for systems of reasonable size.
The numerically expensive part is the repeated solution of the
linear system of Eq. (15). In the context of this work the
preconditioned biconjugate gradient method [27] together with
fast Fourier techniques for matrix multiplication [28, 29] was
used in combination with plane waves as the basis set. The
preconditioned biconjugate gradient methed would probably
also be the most efficient method if localized continuous basis
functions such as gaussians are used. It is interesting to note
that within this formulation the electronic structure problem is
reduced to the solution of linear systems of equations for a set
of complex energies z, whereas conventional formulations lead
to eigenvalue problems.

In order to obtain well localized orbitals (r|®;) a clever
choice for {r!¢,) has to be made. In this way it is possible to
obtain orbitals whose localization is better than the one of
F.7(r,r"). Let us consider the analytically treatable case of the
free electron gas. The density matrix is given by

, 1
F,u.,T(r&r ) = ‘V

dk e—ikre ﬂtr"
FS

4.50 T T T T I B

3.50

2.50

1.50

i I I

050 -

&

Density of States in arbitrary units

-0.50 - | | 1 1 1

Energy in eV

FiG. 3. The density of states of a cluster of 2744 silicon atoms as recon-
structed from the first 100 moments,

where FS denotes the Fermi sphere and V the volume. Applying
the density matrix to an orbital ¢ gives

d(r) = J’dr’ Frr,r)d(r') = fFS dk e”‘”jdr' —E/— d(rer
T )

If the Fourier transform ¢(k) is sufficiently small for wavevec-
tors larger than kg, then ®(r) = ¢(r). If db{r) were a broad
Gaussian with a spatial extension greater than 2u/ke the above
conditions would be fulfilled. This means that for the free
eleciron gas localized orbitals which have nearly the form of
broad Gaussians can be chosen. It turns out that also in the
case of an insulator the Gaussians give rather well localized
orbitals, A pair ®(r), ¢(r) is shown in Fig. 4. From the above
example we also see, however, that the asymptotic behaviour
of a localized orbital cannot be changed. In the case of the free
electron gas it is dictated by the discontinuity at the Fermi
surface.

The above described method has been applied to linear mole-
cules. Since in the present version of the program no semilocal
pseudopotentials can be used, this molecule is not a highly
accurate representation of a real molecule, but the local pseudo-

ey i e R I S T |
-
w
g T
3
£ F
s L
5 [
=l
o [ .
| P WU N—
o 1 2 3 4 B &8 7

r {atomi¢ Lnits)

FIG. 4. A pair of @4r), ¢Xr} functions for model insulator A of Fig. 2.
Note that the localized wavefunction is nearly zero for r greater than 3, whereas
the correlation function vanishes beyond r = 5, roughly. The positions of the
atoms are again denoted by solid cireles.
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TABLE III

Comparison of CPU Times Required to Calculate Eigenvalues and
Charge Density with [terative Diagonalization and the Linear
Localized Orbital Method

Number of atoms, 10 20 30
Time with iter. diag.: 9 min 45 min 120 min
Time with linear method: 13 min 30 min 45 min

potential nevertheless represents the essential features of a sili-
con atom. We compared the new method with a state-of-the-
art iterative block diagonalization method [30]. A localization
length of 12 atomic units and an energy cutoff of 20 Hartrees
were used. Eight integration points were required to evaluate the
integral in Eq. (14) with an accuracy of 1 meV (see Table III).

Unfortunately the localized orbital method, unlike the direct
methods described before, cannot be applied at nonzero temper-
atures and for systems having degenerate states at the Fermi
level with fractional occupation, such as metals. In this case
the density mairix has eigenvalues which are neither O nor 1
but are somewhere in the open interval 0, I[ and the density
matrix is therefore not a projection operator. Unitary transtor-
mations of the orbitals cannot be done and localized orbitals
can therefore not be constructed. This is physically intuitive.
Electrical conductivity apparently requires extended orbitals at
the Fermi level.

If necessary, the correlation function can easily be calculated
from the localized orbitals. It is just the best approximation to
a delta function which one can obtain within the space Sp of
the occupied orbitals,

7. CONCLUSIONS

Algorithms with linear scaling exist for electronic structure
calculations because the density matrix is localized. The local-
ization is much better in the case of an insulator where the
density matrix decays exponentially, whereas in metal the decay
is only algebraic at zereo temperature,

Two classes of methods have been presented: direct methods
which calculate all quantities, such as the charge density, di-
rectly without the intermediate step of orbitals and localized
orbital methods.

Direct methods can be applied to a wide range of materials
at any temperature. They require, however, localized basis sets
such as gaussians, and of course they inherit in this way all
the problems associated with these basis sets, such as basis set
superposition errors.

In the present formulation, localized orbital methods jcan
only be used at zero temperature for insulators. Their scaling
is, however, not affected by the basis set. Plane waves whose
periodicity volume equals the localization volume can for in-
stance be used.

The prefactor for linear methods is unfortunately rather large.
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The linear behavior becomes visible only for systems larger
than the localization volume. The radius at which one cuts off
correlation effects depends of course on the precision one wants
to obtain. It seems however that for bulk systems one needs at
least a localization volume which contains on the order of 50
atoms to obtain reasonable precision. For linear molecules the
method can however be faster for systems containing as few
as 20 atoms.

Finally, it has to be pointed out that all these methods can
be parallelized trivially since one localized orbital can be calcu-
lated independent of all the other ones, and they can thus fully
take advantage of the emerging parallel supercomputers, aiming
at teraflop rates.

APPENDIX 1

In Eq. (7) the notation (H — Sz)gk has been used to make
clear that the operator H — 5z is first expressed in the basis
|u(R)) and only then inverted. In the case of nonorthogonal
basis functions this is not the same as representing the operator
1/tH — Sz) in the basis |u{R)) which would be denoted by
(WR)|1/(H — Sz)|(R")). After this introductory remark let us
now derive Eq. (7). Let Ug; be the matrix whose ith column
contains the ith eigenvector of the generalized eigenvalue
problem

2 (Hap — /\.‘SR,R‘)UR’.I‘ =0

<
The ith orbital is then given by

(1) = ; U, tig(r).

Inverting the above equation gives
u(r) = U~'¢(r),

where u(r) denotes the vector whose components are ug(r)
and y«(r) the vector whose components are (r). Equation (7)
then becomes

o) = ()" U~ (H — S2)7 (U~ "))

It remains now to show that U~'(H — Sz)" (U " is a diagonal
matrix D' with matrix elements &, ;(A; — z)~'. This is, however,
very easy. By elementary reversible matrix transformations
we obtain

URH — S7)U = D,
where D;; = &, ;(A; — z). This expresses the well known fact

that the eigenvectors of the generalized eigenvalue problem
diagonalize both H and S.
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